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Modified discrete Boltzmann equations for arbitrary partitions of the velocity
space are established. The new equations can be derived from the continuous
Boltzmann equation and are a generalization of previous discrete-velocity
models. They preserve mass, momentum, and energy, and an H-theorem holds.
The new model equations are tested by comparing their solutions with the
analytical ones of the continuous Boltzmann equation for the Krook�Wu and
the very hard particle models.
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1. INTRODUCTION

The famous Boltzmann equation, (1) describing rarefied gases in equilibrium
and in non-equilibrium states, can be solved exactly only for idealized spe-
cial cases (see ref. 2 and references herein). Realistic problems, however,
require modified transport equations with a simpler mathematical structure
to overcome the computational complexity. All of these model-equations
have to fulfill at least the basic properties of the full Boltzmann equation,
namely the conservation laws and an H-theorem.

Such simple models are, for example, the so-called discrete velocity
models. In these models the particle velocities can attain only a finite num-
ber of lattice points. A summary of the theory of discrete velocity models
and their applications is given by Monaco and Preziosi(3) and Bellomo and
Gustafson.(4) Although the idea of discretizing the velocity space is rather
old, (5) it was not before the 60's that Broadwell(6, 7) succeeded in using
a discrete velocity model of the Boltzmann equation. A decade later,
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Gatignol(8) and Cabannes(9) developed a systematic and rigorous founda-
tion of the discrete kinetic theory. They analyzed in detail the relevant
aspects of this theory such as modeling, analysis of thermodynamic equi-
librium, and application to fluiddynamic problems. In their pioneering
work only a few particle speeds were used, but a sufficient modeling of
arbitrary velocity distributions was left open. To treat physically relevant
problems, multi-speed models(10) are needed in order to describe ade-
quately macroscopic quantities such as pressure, temperature, etc.

By creating a discrete velocity model, one has to pay attention to the
conservation laws, which restrict the freedom of modeling dramatically.
Furthermore, if we want to describe real gases with the help of discrete
velocities, we have to introduce a partition of the continuous velocity
space. Each discrete velocity vector represents the velocities within its
corresponding domain. The partition permits the discretization of a given
continuous initial distribution density. In previous works, (3, 11) the discrete
Boltzmann equation has governed number densities without taking into
account a partition of the velocity space. Our intention is now to link the
continuous Boltzmann equation to an adequate discrete model Boltzmann
equation. We aim to evaluate the temporal evolution of continuous particle
distributions by means of discrete equations. Therefore, our approach can
be seen as a generalization of the original discrete Boltzmann equations.

It has been proved by Bobylev, Palczewski, and Schneider in a series
of papers(12�14) that the usual discrete Boltzmann equation (3, 8, 11) con-
verges, but only very slowly, to the continuous Boltzmann equation on a
regular grid in three dimensions. However, for the two-dimensional case
they have shown that the discrete Boltzmann equation does not converge
to the continuous one. It should be noted that we do not intend to prove
that our model equation approaches the full Boltzmann equation
asymptotically, because we consider our model to be an approximation
and still refer to the continuous state function which is represented by a
discrete velocity distribution. Numerical solutions to the discrete
Boltzmann equation on a regular grid can be found for the two-and three-
dimensional case in the papers of Innamuro and Sturtevant, (15) Rogier and
Schneider, (16) and Buet.(17)

In this paper, we show in detail the connection between the con-
tinuous and the discrete theory and set up the corresponding discrete
Boltzmann equations. For a given velocity model, we introduce appropriate
velocity domains (cells) to cover the whole physically relevant velocity space.

In Section 2 we obtain a new ``weighted'' discrete Boltzmann equation
derived from the continuous one. Establishing an H-theorem requires certain
symmetry relations concerning the transition rates. This in turn must be con-
sistent with the fact that the size of the cells is not uniform.
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Section 3 is devoted to the two-dimensional ``Union Jack'' model. This
simple hierarchical model allows mixing speed collisions and makes relaxa-
tion towards a Maxwellian possible.

We then apply the new discrete Boltzmann equation to the Union
Jack model for the spatial homogenous case. By assuming the Krook�Wu
scattering model, we compare in Section 4 the discrete temporal evolution
obtained from the numerical integration with an exact solution of the
Boltzmann equation, namely, the famous BKW mode. In Section 5 a com-
parison with discrete results is made for the Very Hard Particle (VHP)
model, which can be solved analytically for arbitrary initial distributions.

2. CONNECTING THE CONTINUOUS AND THE DISCRETE
THEORY

2.1. The Continuous Boltzmann Equation

For rarefied gases the temporal and spatial evolution of the distribution
function f (x, v, t) is governed by the nonlinear Boltzmann equation(18, 19)

\ �
�t

+v } %+ f (x, v, t)=G[ f ]&L[ f ] (2.1)

where the loss term L[ f ] is given by

L[ f ]=| dw |v&w| | d0$ _c( |v&w|, 0 } 0$) f (x, v, t) f (x, w, t) (2.2)

and the gain term G[ f ] reads

G[ f ]=| dw |v$&w$| | d0$ _$c( |v$&w$|, 0$ } 0) f (x, v$, t) f (x, w$, t) (2.3)

Here _c( |v&w|, 0 } 0$) and _$c( |v$&w$|, 0$ } 0) denote the differential cross
sections for the direct collision and its corresponding inverse collision. The
total cross section given by

S( |v&w| )=| d0$ _c( |v&w|, 0 } 0$)=| d0$ _$c( |v$&w$|, 0$ } 0) (2.4)

depends only on the relative speed of the particles. The unit vectors 0 and
0$ indicate the direction of the relative velocities of the particles before and
after collision.
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2.2. The Modified Discrete Boltzmann Equation

In order to establish a discrete velocity model for the continuous
Boltzmann equation, we choose a set of velocities vi (i=1, 2,..., M ) and
subdivide the physically relevant velocity space V/Rd into a disjoint set
of M arbitrary domains 2Vi with the properties vi # 2Vi and V=
�M

i=1 2Vi . Physically relevant means that we consider only velocities up to
a maximal speed vmax . We neglect the number of particles with speeds
greater than vmax and apply the approximation f (x, vi , t) 2v i# f i 2vi=N i

r�2Vi
dv f (x, v, t) within each domain 2Vi , where f i denotes the discrete

distribution function f (x, vi , t), Ni the number of particles in 2Vi , and 2vi

=�2Vi
dv represents the size of the cell 2Vi .

By integrating Eq. (2.1) with respect to v over 2Vi , we obtain for the
left hand side

|
2Vi

dv \ �
�t

+v } %+ f (x, v, t)r\ �
�t

+v i } %+ f i 2v i (2.5)

Performing the same integration for the loss term, Eq. (2.2), yields

|
2Vi

dv L[ f ]r2vi :
M

j=1

2vj |v i&vj | | d0$ _c( |vi&vj |, 0(i, j) } 0$) fi f j (2.6)

where _c( |vi&vj |, 0(i, j) } 0$) indicates that the velocities v and w of the
incident particles have already been discretized. To express the discretiza-
tion of the post-collisional velocities v$ and w$, it is necessary to represent
the differential cross section by means of Dirac's $-function as

_c( |vi&vj |, 0(i, j) } 0$)= :
(k, l )

S( |vi&vj | ) a (k, l )
(i, j) $(0$&0$ (k, l )

(i, j) ) (2.7)

The symbol �(k, l ) denotes the summation over all possible pairs of par-
ticles (k, l ) with discrete velocities vk and vl after collision. Inserting
Eq. (2.7) into Eq. (2.4) yields that the probabilities a(k, l )

(i, j) are normalized to
one

:
(k, l )

a (k, l )
(i, j) =1 (2.8)

In this way, we finally obtain for the loss term

|
2Vi

dv L[ f ]r :
M

j=1

2vi 2vj |v i&vj | S( |vi&vj | ) :
(k, l )

a (k, l )
(i, j) fi f j (2.9)
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The integration of the gain term, Eq. (2.3), results in

|
2Vi

dv G[ f ]r2vi :
M

j=1

2vj |v i&v j | | d0$ _$c( |v i&vj |, 0$ } 0(i, j))

_f (x, 1
2 (v i+vj )+ 1

2 |vi&vj | 0$, t)

_f (x, 1
2 (v i+vj )& 1

2 |vi&vj | 0$, t) (2.10)

where _$c( |vi&vj |, 0$ } 0(i, j)) indicates that the velocities v and w of the
scattered out particles have already been discretized. To express the dis-
cretization of the pre-collisional velocities v$ and w$, it is again necessary to
represent the differential cross section with the help of Dirac's $-function as

_$c( |vi&vj |, 0$ } 0(i, j))= :
(k, l )

S( |vi&vj | ) a$ (i, j)
(k, l ) $(0$&0$ (i, j)

(k, l ) )

where �(k, l ) a$ (i, j)
(k, l ) =1 which is consistent with Eq. (2.4). We obtain for the

gain term

|
2Vi

dv G[ f ]r :
M

j=1

2v i 2vj |vi&vj | S( |v i&vj | ) :
(k, l )

a$ (i, j)
(k, l ) fk fl (2.11)

and can finally write the discrete Boltzmann equation using Eqs. (2.5),
(2.9), and (2.11) in the form

\ �
�t

+vi } %+ fi 2vi

= :
M

j=1

2v i 2vj |vi&vj | S( |vi&vj | ) :
(k, l )

(a$ (i, j)
(k, l ) fk fl&a (k, l )

(i, j) fi fj ) (2.12)

The probabilities a (k, l )
(i, j) and a$ (i, j)

(k, l ) are yet to be determined. Being aware
that �(k, l ) is equivalent to 1

2 �M
k=1 �M

l=1 and introducing the transition
coefficients

A (k, l )
(i, j) :=2v i 2v j |vi&vj | S( |vi&vj | ) a (k, l )

(i, j) (2.13a)

A$ (i, j)
(k, l ) :=2v i 2v j |vi&vj | S( |vi&vj | ) a$ (i, j)

(k, l ) (2.13b)

we can express Eq. (2.12) in the compact form

\ �
�t

+vi } %+ fi 2vi=
1
2

:
M

j, k, l=1

(A$ (i, j)
(k, l ) fk f l&A (k, l )

(i, j) fi fj ) (2.14)
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The coefficients A(k, l )
(i, j) and the probabilities a (k, l )

(i, j) have the property that
A(k, l )

(i, j) {0 and a (k, l )
(i, j) {0 if and only if vi+vj=vk+vl and v2

i +v2
j =v2

k+v2
l .

Furthermore, the relations A (k, l )
(i, j) =A (k, l )

( j, i) =A (l, k)
(i, j) =A (l, k)

( j, i) imply that
a(k, l )

(i, j) =a (k, l )
( j, i) =a (l, k)

(i, j) =a (l, k)
( j, i) . For the term A$ (i, j)

(k, l ) analog relations hold. It
should be noted that we have not yet established a relation between A (k, l )

(i, j)

and A (i, j)
(k, l ) . Such a symmetry is necessary to obtain an H-theorem.

2.3. H-Theorem

Before proving an H-theorem for Eq. (2.14), we introduce a diagonal
matrix B with entries Bii :=vi } % as well as a vector F with components

Fi (U, U) := 1
2 :

M

j, k, l=1

(A$ (i, j)
(k, l ) Uk Ul&A (k, l )

(i, j) UiUj ) (2.15)

Let N be the vector with components Ni and f the vector with components
fi . Then, one can express the discrete Boltzmann equation (2.14) in con-
venient vector notation as

�N
�t

+BN#
dN
dt

=F(f, f ) (2.16)

For an arbitrary vector , with components ,i , we define its scalar product

(,, F(U, U)) := :
M

i=1

,iFi (U, U))= 1
2 :

M

i, j, k, l=1

,i (A$ (i, j)
(k, l ) UkU l&A (k, l )

(i, j) UiU j )

(2.17)

which can also be written as

(,, F(U, U)) = 1
8 :

M

i, j, k, l=1

(,i+,j )(A$ (i, j)
(k, l ) UkUl&A (k, l )

(i, j) UiU j )

& 1
8 :

M

i, j, k, l=1

(,k+,l)(A (i, j)
(k, l ) UkU l&A$ (k, l )

(i, j) UiUj ) (2.18)

If we now require that

A$ (i, j)
(k, l ) =A (i, j)

(k, l ) and A$ (k, l )
(i, j) =A (k, l )

(i, j) (2.19)
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then Eq. (2.18) reduces to

(,, F(U, U)) = 1
8 :

M

i, j, k, l=1

(,i+,j&,k&,l)(A (i, j)
(k, l ) UkUl&A (k, l )

(i, j) U iUj )

(2.20)

We introduce the H-function

H= :
M

i=1

Ni ln fi (2.21)

With the help of Eqs. (2.16) and (2.20) and by setting ,i=1+ln fi , its time
derivative reads as

dH
dt

=
1
8

:
M

i, j, k, l=1 \ln
fi f j

fk f l + (A (i, j)
(k, l ) fk f l&A (k, l )

(i, j) fi fj ) (2.22)

If we now require that

A (i, j)
(k, l )=A (k, l )

(i, j) (2.23)

then it follows from Eq. (2.13) that

2vi 2vj a (k, l )
(i, j) =2vk 2v l a (i, j)

(k, l ) (2.24)

and Eq. (2.22) can be written in the form

dH
dt

=
1
8

:
M

i, j, k, l=1
\ln

fi f j

fk f l +\1&
f i fj

fk f l+ A (i, j)
(k, l ) fk fl (2.25)

Equation (2.23) is a consequence of microreversibility and the fact that we
are dealing with central interactions typical of a monoatomic gas. Hence,
we can dispose of reverse collisions. By introducing the quantities

b (k, l )
(i, j) =

a (k, l )
(i, j)

2vk 2vl
, b (i, j)

(k, l )=
a (i, j)

(k, l )

2v i 2vj
(2.26)

and applying Eqs. (2.13), (2.19), and (2.23), the discrete Boltzmann equa-
tion (2.14) now becomes

\ �
�t

+vi } %+ fi 2vi

=
1
2

:
M

j, k, l=1

2v i 2v j 2vk 2vl |v i&vj | S( |vi&v j | ) b (k, l )
(i, j) ( fk fl& f i fj )

(2.27)
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an Eq. (2.24) simply reads

b (k, l )
(i, j) =b (i, j)

(k, l ) (2.28)

As the probabilities a (k, l )
(i, j) have to fulfill the condition given by Eq. (2.8), the

coefficients b (k, l )
(i, j) must obey the relation

:
(k, l )

b (k, l )
(i, j) 2vk 2v l=1 (2.29)

Since the product (ln( fi f j � fk f l))(1&( f i fj �fk f l))�0, the equilibrium
is given by f� i f� j= f� k f� l , which implies the discrete Maxwell Boltzmann dis-
tribution

f� i=C exp(&E(vi&D)2) (2.30)

where C=C(x), D=D(x), and E=E(x) are constants to be determined
from the macroscopic quantities defined by

n(x, t)= :
M

i=1

f (x, vi , t) 2vi (2.31a)

u(x, t)=
1
n

:
M

i=1

vi f (x, vi , t) 2vi (2.31b)

eth=
1
n

:
M

i=1

mp(v i&u)2

2
f (x, vi , t) 2v i (2.31c)

Here, n(x, t) is the total number density of the particles, u(x, t) the bulk
velocity, eth the average thermal energy, and mp the particles mass. It
should be noted that the concept of temperature in kinetic theory has not
a clear status due to the lack of Galilei invariance of discrete velocity
models as discussed in detail in ref. 20. For this reason, we use the term
average thermal energy eth instead.

3. A HIERARCHICAL DISCRETE VELOCITY MODEL

We now apply the new modified discrete Boltzmann equation (2.27) to
the two-dimensional ``Union Jack'' model shown in Fig. 1. The model was
first introduced by Grieshnig(21, 22) and is the simplest hierarchical model
that allows mixing speed collisions, where at least one of the post-colli-
sional speeds differs from both pre-collisional ones. This means that energy
can be transferred among different hierarchies.
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File: 822J 245309 . By:XX . Date:01:12:99 . Time:08:29 LOP8M. V8.B. Page 01:01
Codes: 1607 Signs: 903 . Length: 44 pic 2 pts, 186 mm

Fig. 1. The two-dimensional Union Jack model.

The eight possible directions are indicated with the subscript m. Along
the vx- and vy -axes, the speeds are given by vh

m=1, 3, 5, 7=h 2v with
2v=vmax �hmax and h=1, 2,..., hmax . Along the diagonals, the speeds are
vh

m=2, 4, 6, 8=- 2 h 2v. The hierarchy h=0 consists only of the velocity
v0

0=0. The maximum hierarchy hmax is associated with the maximum
discrete speed vmax (along the axes m=1, 3, 5, 7). We choose vmax corre-
sponding to a maximum energy of 50 eth . Thus the maximum speed is 10
if v is measured in units of - eth �mp . It should be noted that from one mole
of gas in the equilibrium state, only approximately 2500 particles have
energies larger than 50 eth .

The Union Jack model permits the following bimolecular collisions:

(vh
1 , vh

5) W (vh
3 , vh

7) (3.1a)

(vh
2 , vh

6) W (vh
4 , vh

8) (3.1b)

(vh
1 , vh

4) W (vh
2 , vh

5) (3.1c)

(v2h
1 , vh

4) W (v2h
3 , vh

8) (3.1d)
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(vh
1 , vh

3) W (vh
2 , v0

0) (3.1e)

(vh
2 , vh

4) W (v2h
3 , v0

0) (3.1f )

(vh
1 , v g

3 ) W (v (h+ g)�2
2 , v (h& g)�2

8 ) with 1� g<h (3.1g)

For Eqs. (3.1c)�(3.1g) the corresponding symmetric collisions must also be
considered. The collision scheme, Eqs. (3.1), is very simple. Only two
possible outputs exist for each collision. One of them is the trivial collision
(vi , vj ) � (vi , vj ), which does not contribute to the right hand side of
Eq. (2.27) and must be considered only in the determination of the
probabilities a (k, l )

(i, j) . The number of possible collisions grows moderately
with O(h2

max).
With the above collision scheme the model is regular for hmax�1. It

possesses 4 collisional invariants, which correspond to preservation of
mass, momentum in x- and y-direction, and energy. Consequently, the
model does not decompose into independent subsystems.

We suggest a partition of the velocity space as indicated by the dotted
lines in Fig. 1. The domains 2Vh

m are radially centered to each discrete
velocity vector vh

m . For the domain sizes 2vh
m the conditions 2vh

1=2vh
3=

2vh
5=2vh

7 and 2vh
2=2vh

4=2vh
6=2vh

8 hold because of the symmetry of the
model. The chosen partition yields the following relations between the
domain angles

:=
?

r+2
, ;=

?
2

r
r+2

, :+;=
?
2

and the ratio of the domain sizes

r=
2vh

m=2, 4, 6, 8

2vh
m=1, 3, 5, 7

(3.2)

In detail, the domain sizes are given by

2v0
0=?

(2v)2

2
r+1
r+2

, 2vh
1, 3, 5, 7=(2v)2 ?h

r+2
, 2vh

2, 4, 6, 8=r 2vh
1, 3, 5, 7

The study of the temporal evolution of a non-equilibrium distribution
towards equilibrium obtained by applying the discrete Boltzmann equation
(2.27) as well as the continuous one shows that the relaxation time {relax for
the discrete model is slower (cf. ``BKW Mode'' and ``DVM (K=1)'' in
Fig. 4). In Fig. 2 the relaxation time (in our case defined by the time that
has elapsed until deviation from equilibrium is smaller than 2 percent)
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File: 822J 245311 . By:XX . Date:11:01:00 . Time:09:18 LOP8M. V8.B. Page 01:01
Codes: 1708 Signs: 937 . Length: 44 pic 2 pts, 186 mm

Fig. 2. Relaxation time {relax obtained from the discrete Boltzmann equation (2.27) for the
BKW mode Eq. (4.5) depending on the cell size ratio r.

obtained from the discrete Boltzmann equation (2.27) is shown for the
two-dimensional BKW mode Eq. (4.5) depending on different cell size
ratios r. We select the value of r=1.7, where {relax becomes a minimum.
This choice of r corresponds to the domain angles :=48.65% and
;=41.35%. It should be noted that this minimum of {relax at r=1.7 can also
be observed for other initial conditions.

The reason why we apply the partition shown in Fig. 1 is that for a
normalized continuous two-dimensional Maxwell Boltzmann distribution
with u=0,

f� (v) dv=
1

2?
exp \&

v2

2 + dv (3.4)

the corresponding discrete equilibrium distribution reads for the Union
Jack model

f� i=C1

1
2?

exp \&C2

v2
i

2 + (3.5)

with coefficients

C1=1&
r+1

6(r+2)
(2v)2+O((2v)4) (3.6a)

C2=1&
r+1

12(r+2)
(2v)2+O((2v)4) (3.6b)
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File: 822J 245312 . By:XX . Date:01:12:99 . Time:08:29 LOP8M. V8.B. Page 01:01
Codes: 2128 Signs: 1441 . Length: 44 pic 2 pts, 186 mm

Fig. 3. Factors :, =, # in Eq. (3.7) dependent on average thermal energy eth .

obtained from Eqs. (2.31) after some tedious calculation. If the interval 2v
approaches zero, then both C1 and C2 tend towards 1 and consequently
Eq. (3.5) approaches Eq. (3.4) asymptotically.

In the case u{0, the discrete equilibrium distribution can be written
as

f� i=:
nmp

2?eth

exp \&=
mp

2eth

((vi, x&#ux)2+v2
i, y)+ (3.7)

where we assume that u has only a component ux along the x-axis. The
terms :, =, and # are a measure for the deviation from the continuous
Maxwellian. These three factors are calculated from the macroscopic quan-
tities Eqs. (2.31) with a multidimensional, globally convergent Newton
method(23) for 200, 2000, and 20000 hierarchies. This study shows that :,
=, and # barely depend on the number hmax of hierarchies if hmax is large.
Their dependence on average thermal energy eth is shown in Fig. 3. As
expected, all three values tend to 1 if eth becomes large compared to the
energy mp u2

x�2. However, for relatively small values of eth , the deviation
from the continuous equilibrium distribution is significant. It should be
noted that the value of # is not far from 1 which means that the value of
D in Eq. (2.30) is almost the bulk velocity u.

4. COMPARISON WITH THE BKW MODE

In this section we test the Union Jack model as well as the new
modified discrete Boltzmann equation by applying them to the Krook�Wu
scattering model.(24, 25)
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It is now useful to introduce the abbreviation f h
m := f (x, vh

m , t). In this
and the following section, we will only deal with a spatial homogenous gas
with bulk velocity u=0. Hence, we set f h

1= f h
3= f h

5= f h
7 and f h

2= f h
4=

f h
6= f h

8 . In this case only the three collision types Eqs. (3.1e), (3.1f ),
and (3.1g) contribute in a nontrivial manner to the discrete Boltzmann
equation (2.27). The total number of nontrivial collisions is given by
h2

max �4+hmax .
We consider Maxwell molecules with isotropic scattering. Hence, in

the two-dimensional case d=2 the differential cross section reads

_c( |v&w|, 0 } 0$)=
K

2? |v&w|

leading to the total cross section

S( |v&w| )=
K

|v&w|
(4.1)

by applying Eq. (2.4). Setting K=1, the Boltzmann equation (2.1) then
simplifies in the spatial homogenous case to

�
�t

f (v, t)=| dw | d0$
1

2?
[ f (v$, t) f (w$, t)& f (v, t) f (w, t)] (4.2)

In accordance with Ernst, (2) an exact solution of Eq. (4.2), namely the two-
dimensional BKW mode, can be written as

f d=2
BKW(v) dv=

1
2?

exp \&
v2

2s+ _
2s&1

s2 +
1&s
2s3 v2& dv (4.3)

with

s(t)=1+' exp \&
t
8+ ; &

1
2

�'�0;
1
2

�s�1 (4.4)

It is assumed in Eq. (4.3) that the microscopic and macroscopic quantities
are measured in units such that mp=1, n=1, and eth=1.

The discrete analogue of the continuous BKW mode is given by

f d=2
BKW(v i )=

C1

2?
exp \&C2

v2
i

2s+ _
2s&1

s2 +
1&s
2s3 C2v2

i & (4.5)
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where C1 and C2 are normalization constants. By applying Eqs. (2.31), we
find after some algebra

C1=1&
2s&1

6s2

r+1
r+2

(2v)2+O((2v)4) (4.6a)

C2=1&
2s&1
12s2

r+1
r+2

(2v)2+O((2v)4) (4.6b)

It should be noted that Eqs. (3.6) are special cases of Eqs. (4.6) for s=1.
For t � � and consequently s � 1 the BKW mode approaches the
Maxwell Boltzmann distribution. Since in the limiting case, 2v � 0, both
C1 and C2 tend towards 1, the discrete distribution function, Eq. (4.5),
approaches the continuous solution, Eq. (4.3), asymptotically.

The discrete version of Eq. (4.2) can be simply obtained by inserting
the total cross section, Eq. (4.1), into Eq. (2.27):

�
�t

fi 2vi=
1
2

:
M

j, k, l=1

2v i 2vj 2vk 2vl Kb (k, l )
(i, j) ( fk fl& fi fj ) (4.7)

The next step consists in determining the probabilities a (k, l )
(i, j) needed for

evaluating the coefficients b(k, l )
(i, j) by means of Eq. (2.26). The collision

scheme, Eqs. (3.1), shows that two possible outputs always exist for a colli-
sion

(vi , vj ) � {(vi , vj )
(vk , vl)

and the inverse collision (vk , vl) � {(vk , vl)
(v i , vj )

The probabilities a have to fulfill the relations given by Eqs. (2.8) and
Eqs. (2.24)

a (i, j)
(i, j)+a (k, l )

(i, j) =1, a (i, j)
(k, l )+a (k, l )

(k, l )=1, 2vi 2v j a (k, l )
(i, j) =2vk 2vl a (i, j)

(k, l )

(4.8)

These are three equations for four unknowns. Since the scattering is
isotropic, the probabilities a do not depend on the domain sizes of the
pre-collisional velocities but only on the domain sizes of the velocities after
collision. Hence, setting

a (i, j)
(i, j)=const1 2vi 2v j , a (k, l )

(i, j) =const1 2vk 2v l

a (i, j)
(k, l )=const2 2vi 2v j , a (k, l )

(k, l )=const2 2vk 2vl
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results in const1=const2=1�(2vi 2vj+2vk 2vl), and from Eq. (2.26) it
follows that

b (k, l )
(i, j) =b (i, j)

(k, l )=b (i, j)
(i, j)=b (k, l )

(k, l )=
1

2vi 2vj+2vk 2vl

By integrating Eq. (4.7) numerically, we obtain the temporal evolution
of the discrete distribution function shown in Fig. 4. We choose '=&1

2 in
Eq. (4.4). This corresponds to an initial condition with f (v=0, t=0)=0,
showing a maximum deviation from the Maxwell Boltzmann distribution.
The discrete velocity distribution splits into two branches corresponding to
particles with velocities along the axis and diagonals, respectively. This
means that the relaxation differs for those two directions. Moreover, the
average relaxation for K=1 is too slow compared with the BKW-mode.
This is a general problem of two-dimensional models as has been proved
by Bobylev et al.(12�14) To overcome this shortcoming, we adjust the total

Fig. 4. Temporal evolution of the two-dimensional BKW mode given by Eq. (4.3) and of the
numerical solution of the corresponding discrete Boltzmann equations (4.7) applied to the
Union Jack velocity model (DVM).
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Fig. 5. The H-functions of the two-dimensional BKW mode given by Eq. (4.3) and of the
numerical solution of the corresponding discrete Boltzmann equations (4.7) for different total
cross sections (DVM).

cross section in such a way that the discrete macroscopic quantities, e.g.,
the H-function, show the same relaxation behavior as the continuous
macroscopic quantities. This is demonstrated for various total cross sec-
tions in Fig. 5. For a value of K=6, the H-function obtained from the
analytical solution, Eq. (4.3), and the discrete one obtained from integra-
tion of Eq. (4.7) show the same temporal behavior. The correction factor
K=6 is also the best match for other values of ' in Eq. (4.4), which
correspond to different initial distributions.

The numerical calculations have been performed with a maximum
hierarchy hmax=200 using a Cash�Karp Runge Kutta routine as well as a
Bulirsch�Stoer integration routine taken from ref. 23.

5. COMPARISON WITH THE VHP-MODEL

The two-dimensional and exactly solvable VHP model is discussed in
details in ref. 2. By introducing an energy like scalar x=v2�2, x # [0, �),
the energy distribution function reads for an isotropic velocity distribution

F(x, t) dx= f (v, t) dv

For a differential cross section given by

_c( |v&w|, 0 } 0$)=|v&w|
|sin(/)|

8
(5.1)
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we obtain by applying Eq. (2.4) the total cross section

S( |v&w| )= 1
2 |v&w| (5.2)

The spatial homogenous Boltzmann equation can be written as

�
�t

f (v, t)=| dw |v&w|2 | d0$
|sin(/)|

8
[ f (v$, t) f (w$, t)& f (v, t) f (w, t)]

(5.3)

where /=arccos(0 } 0$) denotes the scattering angle in the center of mass
system. By performing the Laplace transform G(z, t)=��

0 dx e&zxF(x, t),
Eq. (5.3) reduces to the simple equation

(�t&�z+1) G(z, t)=
1
z

(1&G2)

The general solution

G(z, t)=
�(z+t)+(z&1) e&t

(z+1) �(z+t)&e&t (5.4)

can be expressed with the help of the function

�(z)=
G(z, 0)+z&1

(z+1) G(z, 0)&1

which is determined from the initial distribution F(x, 0) or its Laplace
transform G(z, 0), respectively. The distribution function F(x, t) is then
gained by applying the Laplace inversion of Eq. (5.4).

The discrete version of Eq. (5.3) is obtained by inserting the total cross
section, Eq. (5.2), into Eq. (2.27),

�
�t

f i 2vi=
1
2

:
M

j, k, l=1

2v i 2vj 2vk 2v l
K
2

|vi&vj |
2 b (k, l )

(i, j) ( fk fl& fi f j ) (5.5)

where we have introduced a correction factor K as done in the previous
section.

Again there is the problem of how the coefficients b (k, l )
(i, j) should be

determined. Contrary to the Krook�Wu model, the scattering in the VHP
model is not isotropic. The differential cross section, Eq. (5.1), exhibits no
forward scattering and approaches a maximum for a scattering angle
/=?�2.
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Fig. 6. Temporal evolution of the initial condition given by Eq. (5.7a) for the Very Hard
Particle model (VHP F1) and of the numerical solution of the corresponding discrete
Boltzmann equations (5.5) applied to the Union Jack velocity model (DVM).

The probabilities a have to fulfill the relations given by Eqs. (4.8). In
the spatial homogenous case, only Eqs. (3.1e)�(3.1g) contribute to the dis-
crete Boltzmann equation (5.5). For these collisions the scattering angle /
is either 0 or ?�2. If we express the fact that no forward scattering appears
simply by setting a (i, j)

(i, j)=0 and a (k, l )
(i, j) =1, then we obtain for the two

remaining probabilities with regard to Eq. (4.8)

a (i, j)
(k, l )=

2vi 2vj

2vk 2vl
and a (k, l )

(k, l )=1&a (i, j)
(k, l )

This is possible only if 2vi 2vj�2vk 2vl in order to ensure that a (i, j)
(k, l )�1.

In the case that 2vi 2vj�2vk 2vl , we set a (k, l )
(k, l )=0 and a (i, j)

(k, l )=1, which
results in

a (k, l )
(i, j) =

2vk 2vl

2vi 2vj
and a (i, j)

(i, j)=1&a (k, l )
(i, j)
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Fig. 7. Temporal evolution of the initial condition given by Eq. (5.7b) for the Very Hard
Particle model (VHP F2) and of the numerical solution of the corresponding discrete
Boltzmann equations (5.5) applied to the Union Jack velocity model (DVM).

By inserting these equations into Eq. (2.26), we finally obtain

b (k, l )
(i, j) =b (i, j)

(k, l )=
1

max(2vi 2vj , 2vk 2vl)
(5.6)

We solved Eq. (5.5) numerically with a maximum hierarchy hmax=200 for
two totally different initial distributions, namely

F1(x, 0)=4x e&2x (5.7a)

corresponding to �1(z)=&z&3, and

F2(x, 0)=(27x2&18x+3) e&3x (5.7b)

corresponding to �2(z)=(z2+8z+21)�(2z&6). The microscopic and
macroscopic quantities are again measured in units such that mp=1, n=1,
and eth=1. The distribution functions F(x, t) can be obtained analytically
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Fig. 8. The H-functions of two different solutions for the Very Hard Particle Model (VHP
F1 and VHP F2 for the initial conditions Eqs. (5.7a) and (5.7b), respectively) and of the
numerical solution of the corresponding discrete Boltzmann equations (4.7) for different total
cross sections (DVM).

but their lengthy expressions are not cited here. It should be noted that
F1(x, 0) is the same initial condition which has been chosen for the BKW-
mode in the previous section. As shown in Figs. 6 and 7, the distribution
function splits again into two branches and the relaxation for K=1 is
again too slow compared with the analytical solution. The H-functions
obtained from the analytical solutions and from the integration of Eq. (5.5)
exhibit the same temporal behavior for values of K=5.5 (initial condition
F1(x, 0)) and K=9.0 (initial condition F2(x, 0)), respectively, as displayed
in Fig. 8. Since the scattering mechanism is very efficient at high energies,
the relaxation to equilibrium is faster than for the BKW mode.

6. CONCLUSION

This paper establishes discrete Boltzmann equations for arbitrary par-
titions of the velocity space. The new approach permits relating results of
the discrete Boltzmann equations to continuous velocity distributions of
real gases. The discrete transport equations are derived from the con-
tinuous Boltzmann equation and conserve mass, momentum, and energy.
The subdivision of the velocity space requires a representation of the dif-
ferential cross section by means of generalized functions, where the occur-
ring discrete scattering probabilities must obey symmetry relations in order
to obtain an H-theorem in the form H=�M

i=1 Ni ln fi . This new H-theorem
corresponds to a Maxwellian for the discrete distribution function fi .

We apply the new discrete Boltzmann equation to the two-dimen-
sional hierarchical Union Jack model, which is the simplest regular discrete
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velocity model with mixing speed collisions. The partition of the velocity
space allows us to minimize the relaxation time by choosing the domain
angles properly. The discrepancy of the solutions to the discrete Boltzmann
equations from the solutions to the continuous one requires us to adjust
the total cross section for the discrete model, which leads to the same tem-
poral behavior in both cases.

Using two properly scaled ``Union Jacks,'' the new model can be
extended to binary mixtures as well. A detailed investigation will be carried
out in future work.
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